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Abstract 

Intrapartum cardiotocography (CTG) can identify 

babies at risk of fetal hypoxia by detecting changes in fetal 

heart rate and uterine contractions during labour. 

However, variability in CTG interpretations affects 

intervention timings. Machine learning (ML) has been 

applied to this problem and has succeeded. 

We proposed to use a 5-minute Apgar score as the 

benchmark for hypoxia in our ML algorithms as it has 

shown a high correlation with abnormal CTG and better 

clinical support decision-making than pH umbilical cord 

blood.  

We used the CTU-UHB database containing 552 CTGs. 

We trained and compared five algorithms of decision tree 

(DT), random forest (RF), support vector machine (SVM), 

k-Nearest Neighbour (kNN) and artificial neural network 

(ANN). Performances were evaluated using precision, 

recall, F1 score and AUROC. 
The ANN with four deep layers had the highest recall 

(100%), while the RF classifier had the highest F1 (97%), 

AUROC (99.73%) and precision (97%) (Table 1). The 

longest deceleration length is the most important feature 

among the 21 features. 

Apgar scores can be used as a surrogate hypoxia 

marker for classifying CTG, making the model results 

more informative for clinical decision-making.  

 

1. Introduction 

Fetal hypoxia occurs when there is an interruption of 

constant oxygen supply to the baby during labour. Fetal 

hypoxic injury includes intrapartum stillbirth, neonatal 

encephalopathy, death, and disabilities [1-3]. While a level 

of hypoxic stress can be anticipated during labour when 

uterine contracts (UC), the main challenge is identifying 

the small number of babies where the natural physiological 

protective mechanisms fail to counteract the hypoxic stress 

[4]. Fetal monitoring during labour is crucial to prevent the 

devastating effects of fetal hypoxia on babies and families. 

However, it must also be discriminatory enough to 

minimise unnecessary interventions in the form of surgical 

birth (caesarean section) that carry risks to both mother and 

baby [5].  

 

Cardiotocography (CTG) has been widely used as an 

electronic fetal monitoring device to indicate fetal 

wellbeing in the uterus during labour. It is attached to the 

mother's uterus and measures fetal heart rate (FHR) 

changes in conjunction with UC. Clinicians will classify if 

the fetus's condition is reassuring, non-reassuring or 

pathological [6]. Based on the classification, clinicians can 

take steps to reduce the effect of hypoxia, such as assisted 

birth, to minimise the harmful impact on newborns [7]. 

 

Since the introduction of CTG in 1970, research has 

shown inconsistencies in the interpretation of visual CTG 

amongst clinicians can result in a delayed response due to 

the time taken to achieve an agreement [8, 9]. Furthermore, 

some decision-making can be subjective and with some 

level of ambiguity which may contribute to discrepancies 

in CTG interpretation [10]. Due to the false positive cases 

− babies are deemed as hypoxic when they are not, there 

has been a fivefold increase in caesarean sections rates 

while cerebral palsy prevalence remains unchanged [11]  

 

To tackle the shortcomings of visual CTG, 

computerised CTG was introduced to aid in decision-

making for abnormal FHR by standardising interpretations 

allowing a quicker response to compromised fetuses. A 

randomised controlled trial and retrospective studies have 

shown that computerised CTG improved the quality of 

interpretations while minimising decision-making time 

[12]. However, a meta-analysis of six studies showed no 

significant improvement in fetal wellbeing between visual 

and computerised CTG in antenatal and intrapartum 

measurements [13]. 

 

Researchers who used machine learning (ML) on CTG 

data have demonstrated promising results in classifying 

fetal hypoxia. ML learning can improve fetal hypoxia 

detection while reducing interpretation variability between 

clinicians. Previous studies used varying pH umbilical 

cord blood levels to benchmark hypoxia and showed 

promising outcomes. Umbilical cord blood cord pH is 

taken immediately when babies are born, which does not 

reflect their ability to recover from birth stress [14]. Hence, 

we proposed using 5 minutes Apgar score as the surrogate 

marker of hypoxia in our ML algorithms. Low Apgar 

scores have shown a high correlation with hypoxic 
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diagnosis and abnormal CTG. It is a routine, standardised 

measurement of babies' physiology and condition after 

birth, such as appearance, pulse, grimace, activity and 

respiration. Evidence showed that babies recover from 

birth stress, where there are differences in the Apgar score 

taken 1 minute and 5 minutes after birth. Studies have 

shown that low Apgar scores are associated with the 

diagnosis of hypoxia and cerebral palsy [15, 16]. 

Therefore, 5 minutes Apgar score after birth is a good 

indicator of whether babies can recover and is a better 

clinical decision than the pH of umbilical cord blood [17]. 

 

2. Methodology 

2.1. Dataset 

We used raw CTG from the CTU-UHB database, 

which consists of 552 CTG recordings sampled at 4Hz, 

and the recording was taken no longer than 90 minutes 

during labour (second stage of labour). CTG records were 

taken between 2009 and 2012 at the University Hospital 

in Brno, Czech Republic [18]. The Apgar score ranges 

from 0 to 10, where 0 is very unhealthy, and 10 is 

healthy. Our study used Apgar scores from 10 to 7 for 

healthy and 6 to 0 for hypoxic, where our model is trained 

to classify between these two categories. 

 

2.2. Feature Extraction 

    We used both FHR and UC for this study. Before 

feature extraction, CTG signals were denoised to remove 

unwanted artefacts and missing recordings due to fetal 

and maternal movements. Missing beats were 

interpolated, and the signal was smoothed with moving 

mean. 

 

For morphological features, we extracted acceleration, 

deceleration, average baseline and long and short-term 

heart rate variability of FHR in conjunction with UC as 

recommended by the National Institute for Health and Care 

Excellence guidelines for CTG interpretations [19]. For 

time domain, frequency domain and non-linear features, 

we only used FHR signals. We extracted 21 features, 

which were used to build the classification model. 

 

2.3. Classification 

We used Scikit-learn for modelling, and five ML 

classifiers were used to compare the performances, which 

include decision tree (DT), random forest (RF), support 

vector machine (SVM), k nearest neighbours (kNN) and 

artificial neural network (ANN). Due to the small sample 

size, we used oversampled using the Synthetic Minority 

Oversampling Technique (SMOTE) to increase the 

number of samples. The data was split into two subsets: 

train (70%) and test (30%). We performed a 5-fold cross-

validation on the training set. GridSearchCV was used for 

hyperparameter tuning on the training subset to boost the 

model performances, where the best parameter was 

chosen for the final model [20]. The classification model 

was evaluated on a separate test subset.  

 

2.4. Model Evaluation 

We used the confusion matrix to measure the true 

positive (TP), true negative (TN), false positive (FP) and 

false negative (FN) values. TP represents the correct 

classification for positive samples, TN represents the 

correct classification of negative samples, FP represents 

the wrong classification for positive samples, and FN 

represents the wrong classification for negative samples 

[21]. We calculated precision, recall, F1 score and area 

under the receiving operator characteristics (AUROC) 

based on those values. 

 

Precision (P)= TP / (TP + FP)   (1) 

 

Recall (R) = TP / (TP+FN)   (2) 

 

F1 score = 2 x (P x R) / (P + R)    (3) 

 

 

3. Results 

By using SMOTE, the dataset was increased from 552 

to 1066. The oversampled group is the hypoxic Apgar 

scores, where the sample size increased from 19 to 533 

subjects (figure 1). Based on the performance metrics, 

ANN with four deep layers, rectified linear unit activation 

and ADAM optimiser has the highest recall (100%). In 

contrast, the RF classifier has the highest F1 score 

(97.00%), AUROC (99.73) and precision (97.00%) 

(Table 1). Other results from different classifiers are all 

recorded in table 1. All five classifiers generally show 

promising results where most performance metrics score 

more than 75%, except for the F1 score, precision and 

AUROC for ANN. We identified the top three important 

features using the RF algorithm: longest FHR 

deceleration, Lempel-Ziv complexity (C) and the number 

of intrinsic mode functions (IMF). Other signal features 

that we extracted were mean, standard deviation, sample 

entropy, approximate entropy, long-term variability, 

short-term variability, total delta, power spectral density 

power of low frequency, movement frequency and high 

frequency, the ratio of low and high-frequency spectral 

density power, the ratio of low and combination of high 

and movement spectral density power, number of 

acceleration, number of deceleration, average baseline 
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and longest length of an acceleration. 

 

Figure 1 shows the distribution between healthy and 

unhealthy babies in the training and test subset 

 

 
 

 

Table 1 shows the comparison of performances metrics 

between classifiers  

 

Classifiers P (%) R (%) 
F1 
(%) 

AUROC 
(%) 

DT 93.0 88.0 90.0 94.8 

RF 98.0 98.0 98.0 99.8 

SVM 72.0 71.0 71.0 76.9 

kNN 70.0 85.0 77.0 81.1 

ANN 51.0 100.0 67.0 50.0 

 

Figure 2 shows the top three important features calculated 

using the RF algorithm 

 

 

 

4.  Discussion 

Compared with previous studies, our performances are 

as high as those that used pH levels as a surrogate marker 

for hypoxia [22, 23]. This indicates that Apgar scores are 

as good as pH levels in classifying hypoxia for this dataset.  

 

Interestingly, two of the top features are from the time 

domain (longest FHR deceleration and average baseline), 

and one is from the non-linear domain (number of intrinsic 

mode functions) (figure 2). This shows that other domains 

of CTG help distinguish hypoxic fetuses compared to the 

traditional morphological changes suggested by clinical 

guidelines, and discrete signal processing techniques are 

crucial in interpreting CTGs. 

 

One of the limitations of this study is the number of 

samples. While we employed oversampling techniques, 

the small sample size is still small for an ML study. Future 

studies would benefit from larger sample size and a 

mixture of geographical regions to increase model 

generalisability. Next, we oversampled the train and test 

set, where there is an equal number of healthy and hypoxic 

fetuses. However, in real life, the number of hypoxic 

fetuses is very small, demonstrating a severe imbalance 

between healthy and cases of hypoxia. Therefore, we need 

to create a detection model that can be implemented in real-

life situations and is relevant in clinical settings. In 

addition, we tried to compare previous studies that used pH 

umbilical cord blood, and we found it difficult as previous 

studies used various pH benchmarks and selective 

performance measures when reporting their outcomes. 

 

5.  Conclusion 

Our study shows that 5 minutes Apgar score can be used 

to distinguish between hypoxic and healthy CTGs for this 

dataset and achieved performances as high as studies using 

pH levels. Since Apgar scores reflect babies' ability to 

recover from intrapartum hypoxia, it is a more relevant 

surrogate marker to distinguish unhealthy babies. We can 

benefit from an external validation dataset to make our 

model clinically pertinent and more generalisable for the 

overall population. We also plan to integrate other 

obstetrics factors to improve classifications and make our 

model more clinically relevant. 
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